The parabolic interpolation for the transient-state approximation is used in analyzing the temperature field and the concentration field of a nonvolatile substance in solution as well as the temperature field and the concentration field of the solvent vapor in the ambient atmosphere, when evaporation is accompanied by a lowering of the liquid level.

Although the solution of problems in transient evaporation with a moving interphase boundary has been the object of many studies [1-9], the nonlinearity of such problems still presents a serious obstacle in the way of completely establishing the interrelations between all quantities involved.

We will attempt here to fill the gap as much as possible. Evaporation of a solution under certain generally reasonable assumptions can be described by the following system of equations:

$$
\begin{align*}
& \left.\begin{array}{rl}
\frac{\partial T_{1}}{\partial \tau} & =\frac{\partial}{\partial x}\left(a_{1} \frac{\partial T_{1}}{\partial x}\right) \\
\frac{\partial C}{\partial \tau} & =\frac{\partial}{\partial x}\left(D_{1} \frac{\partial C}{\partial x}\right)
\end{array}\right\}, \xi<x<h_{1}, \tag{1}\\
& \left.\begin{array}{l}
\frac{\partial T_{2}}{\partial \tau}=\frac{\partial}{\partial x}\left(a_{2} \frac{\partial T_{2}}{\partial x}\right) \\
\frac{\partial u}{\partial \tau}=\frac{\partial}{\partial x}\left(D^{2} \frac{\partial u}{\partial x}\right)
\end{array}\right\},-h_{2}<x<\xi, \tag{2}\\
& C(\xi, \tau) \equiv C_{\xi}, T_{1}(\xi, \tau) \equiv T_{\xi} \equiv T_{2}(\xi, \tau), u(\xi, \tau)=u_{s}\left(T_{\xi}, C_{\xi}\right), \tag{3}\\
& \left.\left.\begin{array}{l}
T_{1}(x, 0)=T_{0}=\text { const } \\
C(x, 0)=C_{0}=\text { const }
\end{array}\right\}, x>0 ; \xi(0)=0 ; \begin{array}{l}
T_{2}(x, 0)=T_{\infty}=\text { const } \\
u(x, 0)=u_{0}=\text { const }
\end{array}\right\}, x<0, \tag{4}\\
& \left.\frac{\partial T_{1}}{\partial x}\right|_{x=h_{1}}=0,\left.\frac{\partial C}{\partial x}\right|_{x=h_{1}}=0,\left.\frac{\partial T_{2}}{\partial x}\right|_{x=-h_{2}}=0,\left.\frac{\partial u}{\partial x}\right|_{x=-h_{2}}=0, \tag{5}\\
& \int_{-A_{1}}^{\zeta} \frac{k_{2}}{a_{2}}\left(T_{2}-T_{\infty}\right) d x+\int_{\xi}^{h_{1}} \frac{k_{1}}{a_{1}}\left(T_{1}-T_{0}\right) d x+\rho L \xi=\int_{0}^{\xi} \frac{k_{1}}{a_{1}} T_{0} d x-\int_{0}^{5} \frac{k_{2}}{a_{2}} T_{\infty} d x, \tag{6}\\
& \int_{5}^{h_{1}} C d x=\int_{0}^{h_{1}} C_{0} d x, \tag{7}\\
& \int_{-h_{2}}^{5} u d x+\int_{\xi}^{h_{1}} \rho d x=\int_{-h_{2}}^{0} u_{0} d x+\int_{0}^{n_{1}} \rho d x . \tag{8}
\end{align*}
$$

Here the x axis runs into the liquid and the origin of coordinates has been fixed so that the evaporation surface at the initial instant of time coincides with the $\mathrm{x}=0$ plane. While functions $\mathrm{T}_{1}(\mathrm{x}, \tau), \mathrm{T}_{2}(\mathrm{x}, \tau), \mathrm{C}(\mathrm{x}, \tau)$,

Institute of Colloidal Chemistry and of Water Chemistry, Academy of Sciences of the Ukrainian SSR, Kiev. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 24, No. 3, pp. 493-498, March, 1974. Original article submitted May 3, 1972.
© 1975 Plenum Publishing Corporation, 227 West 17th Street, New York, N.Y. 10011. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, microfilming, recording or otherwise, without written permission of the publisher. A copy of this article is available from the publisher for $\$ 15.00$.
and $u(x, \tau)$ are unknown, u_{S} is assumed a known function of two variables T_{ξ}, C_{ξ} and represents either Raoult's Law when T_{ξ} is fixed or the Clapeyron-Clausius relation when C_{ξ} is fixed. Equations (6)-(8) express the conservation of the total heat content of solvent and solute.

We assume further that the thermal conductivities, the thermal diffusivities, and the molecular diffusivities remain constant.

Differentiating (6)-(8) with respect to time, we obtain

$$
\begin{align*}
-\left.k_{2} \frac{\partial T_{2}}{\partial x}\right|_{x=5}+\left.k_{1} \frac{\partial T_{1}}{d x}\right|_{x=5}= & {\left[\rho L+\left(\frac{k_{2}}{a_{2}}-\frac{k_{1}}{a_{1}}\right) T_{\xi}\right] \frac{d \xi}{d \tau} } \tag{9}\\
-\left.D_{1} \frac{\partial C}{\partial x}\right|_{x=5} & =C_{\xi} \frac{d \xi}{d \tau} \tag{10}\\
\left.D_{2} \frac{\partial u}{\partial x}\right|_{x=5}= & \left(\rho-u_{s}\right) \frac{d \xi}{d \tau} \tag{11}
\end{align*}
$$

The unknowns will be sought in the transient-state parabolic approximation

$$
\begin{align*}
& C(x, \tau)= \begin{cases}C_{8}+\frac{\left(C_{\xi}-C_{8}\right)}{\delta_{1}^{2}}\left[x-\left(\xi+\delta_{1}\right)\right]^{2}, \xi \leqslant x \leqslant \xi+\delta_{1}, \\
C_{8}, & \xi+\delta_{1} \leqslant x,\end{cases} \\
& u(x, \tau)= \begin{cases}u_{\delta}+\frac{\left(u_{s}-u_{\delta}\right)}{\delta_{2}^{2}}\left[x-\left(\xi-\delta_{2}\right)\right]^{2}, & \xi-\delta_{2} \leqslant x \leqslant \xi, \\
u_{\delta}, & x \leqslant \xi-\delta_{2},\end{cases} \\
& T_{1}(x, \tau)= \begin{cases}T_{1 \delta}+\frac{\left(T_{\xi}-T_{18}\right)}{\delta_{3}^{2}}\left[x-\left(\xi+\delta_{3}\right)\right]^{2}, & \xi \leqslant x \leqslant \xi+\delta_{3}, \\
T_{1 \delta}, & \xi+\delta_{3} \leqslant x,\end{cases} \tag{12}\\
& T_{2}(x, \tau)= \begin{cases}T_{2 \delta}-\frac{\left(T_{28}-T_{\xi}\right)}{\delta_{4}^{2}}\left[x-\left(\xi-\delta_{4}\right)\right]^{2}, \xi-\delta_{4} \leqslant x \leqslant \xi, \\
T_{2 \delta}, & x \leqslant \xi-\delta_{4} .\end{cases}
\end{align*}
$$

Here the four symbols with the subscript δ represent the values of the sought functions at the respective "depths of penetration" δ (particular for each function) [1] measured from the moving interphase boundary ξ. Both ξ and δ are functions of time or of quantities uniquely related to time, namely:

$$
\begin{equation*}
\left.C(x, \tau)\right|_{x=\xi+\delta_{1}}=C_{\delta},\left.\frac{\partial C}{\partial x}\right|_{x=\delta+\delta_{1}}=0 \tag{13}
\end{equation*}
$$

and analogously for the other unknowns.
Inserting (12) into (6)-(8) and then integrating, we obtain

$$
\begin{gather*}
\frac{k_{2}}{a_{2}}\left[\left(T_{2 \delta}-T_{\infty}\right)\left(h_{2}+\xi\right)-\left(T_{2 \delta}-T_{\xi}\right) \frac{\delta_{4}}{3}\right] \\
+\frac{k_{1}}{a_{1}}\left[\left(T_{1 \delta}-T_{0}\right)\left(h_{1}-\xi\right)+\left(T_{\xi}-T_{1 \delta}\right) \frac{\delta_{3}}{3}\right]+\left(\rho L+\frac{k_{2}}{a_{2}} T_{\infty}-\frac{k_{1}}{a_{1}} T_{0}\right) \xi=0 \tag{14}\\
C_{0}\left(h_{1}-\xi+\delta_{1}\right)+C_{\delta} \delta_{1}+\left(C_{\xi}-C_{\delta}\right) \frac{\delta_{1}}{3}=C_{0} h_{1} \tag{15}\\
\left(u_{\delta}-u_{0}\right)\left(\xi-\delta_{2}+h_{2}\right)+\left(u_{\delta}-u_{0}\right) \delta_{2}+\left(u_{\varepsilon}-u_{\delta}\right) \frac{\delta_{2}}{3}=\left(\rho-u_{6}\right) \xi \tag{16}
\end{gather*}
$$

Inserting (12) into (9)-(11) yields

$$
\begin{gather*}
\frac{k_{2}\left(T_{2 \delta}-T_{\xi}\right)}{\delta_{1}}-\frac{k_{1}\left(T_{\xi}-T_{10}\right)}{\delta_{3}}=\frac{1}{2}\left[\rho L+\left(\frac{k_{2}}{a_{2}}-\frac{\dot{k}_{1}}{a_{1}}\right) T_{\xi}\right] \frac{d \xi}{d \tau} \tag{17}\\
C_{\xi} \frac{d \xi}{d \tau}=\frac{2 D_{1}\left(C_{\xi}-C_{0}\right)}{\delta_{1}} \tag{18}\\
\left(\rho-u_{s}\right) \frac{d \xi}{d \tau}=\frac{2 D_{2}\left(u_{s}-u_{0}\right)}{\delta_{2}} \tag{19}
\end{gather*}
$$

Instead of (1) and (2) we will solve the equations of "heat balance" [1]

$$
\begin{align*}
& \int_{\xi}^{\xi+\delta_{s}} \frac{\partial T_{1}}{\partial \tau} d x=\int_{\xi}^{\xi+\delta_{3}} \frac{\partial}{\partial x}\left(a_{1} \frac{\partial T_{1}}{\partial x}\right) d x \tag{20}\\
& \int_{\xi-o_{4}}^{\xi} \frac{\partial T_{2}}{\partial \tau} d x=\int_{\xi=\delta_{4}}^{\xi} \frac{\partial}{\partial x}\left(a_{2} \frac{\partial T_{2}}{\partial x}\right) d x . \tag{21}
\end{align*}
$$

Expressing the left-hand sides in terms of the derivatives of the integral with respect to time τ, and using the approximations (12), we obtain instead of (20) and (21):

$$
\begin{align*}
& d \ln \left[\left(T_{\xi}-T_{1 \delta}\right) v\right]+\left(1+\frac{3}{v}-\frac{9 a_{1}}{\beta v^{2}}\right) d \ln \xi=-\frac{3 d T_{1 \delta}}{\left(T_{\xi}-T_{1 \delta}\right)}, \tag{22}\\
& d \ln \left[\left(T_{2 \delta}-T_{\xi}\right) \omega\right]+\left(1-\frac{3}{w}-\frac{9 a_{2}}{\beta v^{2}}\right) d \ln \xi=\frac{3 d T_{2 \delta}}{\left(T_{2 \delta}-T_{\xi}\right)}, \tag{23}
\end{align*}
$$

where, in order to simplify the notation, we introduce

$$
\begin{equation*}
\frac{d \xi^{2}}{d \tau}=\frac{4}{3} \beta, v=\frac{\delta_{3}}{\xi}, \omega=\frac{\delta_{4}}{\xi} . \tag{23a}
\end{equation*}
$$

and

$$
\begin{equation*}
p=\frac{\delta_{1}}{\xi}, s=\frac{\delta_{2}}{\xi} \tag{23b}
\end{equation*}
$$

In this case Eq. (14) becomes an identity and can be used either for verification or as an auxiliary equation.
It should be noted (and remembered later on) that $T_{1 \delta}$ and δ_{1} are directly related for each of the unknown functions. By virtue of the limitation $\xi+\delta_{3} \leq \mathrm{h}_{1}$, indeed, $\mathrm{T}_{1 \delta}$ is equal to T_{0} if $\xi+\delta_{3}<\mathrm{h}_{1}$ but remains unknown if $\xi+\delta_{3}=h_{1}$, i.e., if δ_{3} can be expressed in terms of ξ. As a consequence, we have four characteristic instants of time corresponding to the roots of the equations

$$
\begin{align*}
& \xi(\tau)+\delta_{1}(\tau)=h_{1}, \\
& \xi(\tau)+\delta_{3}(\tau)=h_{1}, \tag{24}\\
& \xi(\tau)-\delta_{2}(\tau)=-h_{2}, \\
& \xi(\tau)-\delta_{4}(\tau)=-h_{2} .
\end{align*}
$$

Relations (15)-(19), (22), (23) are sufficient for determining $\xi, \mathrm{T}_{\xi}, \mathrm{C}_{\xi}$, and the four (by virtue of the earlier observation) unknowns for the sought functions. In this case the "heat balance" equations for $C(x, \tau)$ and $u(x, \tau)$ become identities.

From (15) and (18) we have (remembering the earlier observation)

$$
\begin{gather*}
\frac{d \xi^{2}}{d \tau}=\frac{4}{3} D_{1} \frac{\left(C_{\xi}-C_{0}\right)^{2}}{C_{0} C_{\xi}}, \text { if } \xi+\delta_{1} \leqslant h_{1}, \tag{25}\\
\frac{d \xi^{2}}{d \tau}=6 D_{1}\left[\left(1-\frac{C_{0}}{C_{\xi}}\right)\left(\frac{\xi}{h_{1}-\xi}\right)-\frac{C_{0}}{C_{\xi}}\left(\frac{\xi}{h_{1}-\xi}\right)^{2}\right], \text { if } \vdots \xi+\delta_{1}=h_{1} . \tag{26}
\end{gather*}
$$

or, which is equivalent,

$$
\begin{equation*}
\frac{d\left(h_{1}-\xi\right)^{2}}{d \tau}=-6 D_{1}\left[1-\frac{C_{0}}{C_{\xi}}\left(\frac{h_{1}}{h_{1}-\xi}\right)\right],- \text { if } \xi+\delta_{1}=h_{1} \tag{26a}
\end{equation*}
$$

and from (16) and (19) we have

$$
\begin{gather*}
\frac{d \xi^{2}}{d \tau}=\frac{4}{3} D_{2} \frac{\left(u_{s}-u_{0}\right)^{2}}{\left(\rho-u_{s}\right)\left(\rho-u_{0}\right)}, \quad \text { if } \xi-\delta_{2} \geqslant-h_{2}, \tag{27}\\
\frac{d \xi^{2}}{d \tau}=6 D_{2}\left[\left(\frac{u_{s}-u_{0}}{\rho-u_{s}}\right) \cdot \frac{h_{2} \xi}{\left(h_{2}+\xi\right)^{2}}-\left(\frac{\xi}{h_{2}+\xi}\right)^{2}\right], \quad \text { if } \xi-\delta_{2}=-h_{2}, \tag{28}
\end{gather*}
$$

or, which is equivalent,

$$
\begin{equation*}
\frac{d\left(h_{2}+\xi\right)^{2}}{d \tau}=6 D_{2}\left[\left(\frac{\rho-u_{0}}{\rho-u_{s}}\right)\left(\frac{h_{2}}{h_{2}+\xi}\right)-1\right], \text { if } \xi-\delta_{2}=-h_{2} \tag{28a}
\end{equation*}
$$

The earlier observation applies also to Eqs. (22) and (23). For instance, at $\tau \leq \tau_{0}\left(\tau_{0}\right.$ denoting the smallest root of Eq. (24) and with

$$
\begin{equation*}
\frac{D_{2}\left(u_{s}-u_{0}\right)^{2}}{\left(\rho-u_{s}\right)\left(\rho-u_{0}\right)}=\frac{D_{1}\left(C_{\xi}-C_{0}\right)^{2}}{C_{0} C_{\xi}}=\beta, \tag{29}
\end{equation*}
$$

following from (25) and (27)), we note (since $\mathrm{T}_{1 \delta}=\mathrm{T}_{0}$ and $\mathrm{T}_{2 \delta}=\mathrm{T}_{\infty}$) that (22) and (23) are satisfied together with (29) and (17) if v and w are constant and satisfy the equations

$$
\begin{align*}
& 1+\frac{3}{v}-\frac{9 a_{i}}{\beta v^{2}}=0 \tag{30}\\
& 1-\frac{3}{w}-\frac{9 a_{2}}{\beta w w^{2}}=0 \tag{31}
\end{align*}
$$

i.e., selecting the roots which correspond to evaporation (other roots correspond to other phase transformations) yields

$$
\begin{gather*}
v=\frac{3}{2}\left(\sqrt{1+\frac{4 a_{1}}{\beta}}-1\right) \tag{32}\\
w=\frac{3}{2}\left(\sqrt{1+\frac{4 a_{2}}{\beta}}+1\right), \tag{33}
\end{gather*}
$$

and these two expressions inserted into (17) will add to system (29) that lacking equation

$$
\begin{equation*}
\frac{k_{2}}{a_{2}}\left(T_{\infty}-T_{\xi}\right)\left(\sqrt{1+\frac{4 a_{i}}{\beta}-1}\right)-\frac{k_{1}}{a_{1}}\left(T_{\xi}-T_{0}\right)\left(\sqrt{1+\frac{4 a_{1}}{\beta}+1}\right)=2\left[\rho L+\left(\frac{k_{2}}{a_{2}}-\frac{k_{1}}{a_{1}}\right) T_{\xi}\right] \tag{34}
\end{equation*}
$$

or the equivalent

$$
\begin{equation*}
\frac{k_{2}}{a_{2}}\left(T_{\infty}-T_{\xi}\right)\left(\sqrt{1+\frac{4 a_{2}}{\beta}+1}\right)-\frac{k_{1}}{a_{1}}\left(T_{\xi}-T_{0}\right)\left(\sqrt{1+\frac{4 a_{1}}{\beta}}-1\right)=2\left(\rho L+\frac{k_{2}}{a_{2}} T_{\infty}-\frac{k_{1}}{a_{1}} T_{0}\right) \tag{34a}
\end{equation*}
$$

for determining the quantities β, T_{ξ}, and C_{ξ} found to be constant.
In this way, we find that at $0<\tau \leq \tau_{0}$ the quantities $\delta_{1}, \delta_{2}, \delta_{3}$, and δ_{4} are proportional to ξ and thus $\xi_{0}=\xi\left(\tau_{0}\right)$ can be easily determined from Eqs. (24). Since function ξ yields τ readily, hence τ_{0} is determinate.

It becomes obvious now that the solution is self-adjoint at $0<\tau \leq \tau_{0}$ and it matches, within the proper approximation, the solution for an unbounded liquid in an unbounded medium. At $\tau>\tau_{0}$ the solution is also not an explicit function of time, which has to do with the conservation of total energy of the liquid and the ambient medium.

NOTATION

x	is the space coordinate;
τ	is the time;
ξ	is the coordinate of the liquid surface;
a_{1}, a_{2}	are the thermal diffusivity of the liquid and the ambient medium respectively;
$\mathrm{k}_{1}, \mathrm{k}_{2}$	are the thermal conductivity of the liquid and the ambient medium respectively;
D_{1}	is the molecular diffusivity of solute in the solvent;
D_{2}	is the molecular diffusivity of solvent vapor in the ambient medium;
ρ	is the density of the solvent;
L	is the heat of evaporation of the solvent;
$\mathrm{T}_{0}, \mathrm{~T}_{\infty}$	is the initial temperature of the liquid and the medium respectively; C_{0}
is the initial concentration of solute in the solvent;	
u_{0}	is the initial concentration of solvent vapor in the ambient medium;
h_{1}	is the initial depth of liquid;
h_{2}	is the initial thickness of vapor-gas layer in the ambient medium;
T_{ξ}	is the temperature of liquid surface;
C_{ξ}	is the concentration of solute at the liquid surface;
δ_{1}	is the "penetration depth" of solute concentration in the solvent;
δ_{2}	is the "penetration depth" of solvent vapor concentration in the ambient medium;
δ_{3}	is the "penetration depth" of temperature in the liquid;
δ_{4}	is the "penetration depth" of temperature in the ambient medium;

C_{δ}
u_{δ}
$\mathrm{T}_{1 \delta}$
$\mathrm{~T}_{2 \delta}$
$\mathrm{u}_{\mathrm{s}}\left(\mathrm{T}_{\xi}, \quad \mathrm{C}_{\xi}\right)=\mathrm{u}_{\mathrm{s}}$
is the concentration of solute beyond its penetration depth; is the concentration of solvent vapor beyond its penetration depth; is the temperature in the liquid beyond the penetration depth; is the temperature in the ambient medium beyond the penetration depth; is the concentration of saturated solvent vapor (known function of T_{ξ} and C_{ξ}, which are unknown functions of time or of a quantity uniquely related to it).

LITERATURE CITED

1. T. Goodman, in: Problems in Heat Transfer [Russian translation], Atomizdat (1967).
2. P. P. Zolotarev, Dokl. Akad. Nauk SSSR, 168, 83 (1966).
3. H. Carslaw and D. Yaeger, Thermal Conductivity of Solids [Russian translation], Izd. Nauka, Moscow (1964).
4. A. V. Lykov, Heat Conduction in Transient Processes [in Russian], Gosénergoizdat, Moscow-Leningrad (1948).
5. L. I. Rubinshtein, The Stefan Problem [in Russian], Izd. Zvaigzne (1967).
6. A. I. Tikhonov and A.A. Samarskii, Equations of Mathematical Physics [in Russian], Moscow (1951).
7. A. Friedman, Partial Differential Equations of the Parabolic Type [Russian translation], Izd. Mir (1968).
8. N. A. Fuks, Evaporation and Droplet Buildup in a Gaseous Medium [in Russian], Izd. Akad. Nauk SSSR (1958).
9. V. E. Shamanskii, Numerical Methods of Solving Boundary-Value Problems on a Digital Computer [in Russian], Izd. Akad. Nauk UkrSSR, Kiev (1963), Vol. 1, Izd. Naukova Dumka, Kiev (1966), Vol. 2.
